Weight | 1 lbs |
---|---|
Dimensions | 9 × 5 × 2 in |
accession | P08253 |
express system | HEK293 |
product tag | N-His |
purity | > 95% as determined by Tris-Bis PAGE;> 95% as determined by HPLC |
background | Matrix metalloproteinase (MMP)-2 cleaves a broad spectrum of substrates, including extracellular matrix components (responsible for normal tissue remodeling) and cytokines (modulators of the inflammatory response to physiological insults such as tissue damage). MMP-2 expression is elevated in many cardiovascular pathologies (e.g., myocardial infarction, hypertensive heart disease) where tissue remodeling and inflammatory responses are perturbed. |
molecular weight | The protein has a predicted MW of 71.6 kDa. Due to glycosylation, the protein migrates to 72-75 kDa based on Tris-Bis PAGE result. |
available size | 100 µg, 500 µg |
endotoxin | Less than 1EU per ug by the LAL method. |
Human MMP-2 Protein (pro form) 3489
$240.00 – $800.00
Summary
- Expression: HEK293
- Pure: Yes (SDS-PAGE)
- Amino Acid Range: Ile34-Cys660
Human MMP-2 Protein (pro form) 3489
protein |
---|
Size and concentration 100, 500µg and liquid |
Form Liquid |
Storage Instructions Valid for 12 months from date of receipt when stored at -80°C. Recommend to aliquot the protein into smaller quantities for optimal storage. Please minimize freeze-thaw cycles. |
Storage buffer Shipped with dry ice. |
Purity > 95% as determined by Tris-Bis PAGE |
target relevance |
---|
Matrix metalloproteinase (MMP)-2 cleaves a broad spectrum of substrates, including extracellular matrix components (responsible for normal tissue remodeling) and cytokines (modulators of the inflammatory response to physiological insults such as tissue damage). MMP-2 expression is elevated in many cardiovascular pathologies (e.g., myocardial infarction, hypertensive heart disease) where tissue remodeling and inflammatory responses are perturbed. |
Protein names 72 kDa type IV collagenase (EC 3.4.24.24) (72 kDa gelatinase) (Gelatinase A) (Matrix metalloproteinase-2) (MMP-2) (TBE-1) [Cleaved into: PEX] |
Gene names MMP2,MMP2 CLG4A |
Protein family Peptidase M10A family |
Mass 9606Da |
Function Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro. Involved in the formation of the fibrovascular tissues in association with MMP14.; PEX, the C-terminal non-catalytic fragment of MMP2, posseses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.; [Isoform 2]: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways. |
Catalytic activity BINDING 102; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="1"; /ligand_note="catalytic"; /note="in inhibited form"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD"; BINDING 134; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="1"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 168; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:3AYU"; BINDING 178; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 180; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 185; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="3"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 186; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="3"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 193; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 200; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:3AYU"; BINDING 202; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 204; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 206; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="2"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 208; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="3"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 209; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="1"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 211; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="1"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1QIB, ECO:0007744|PDB:3AYU"; BINDING 211; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="3"; /evidence="ECO:0000269|PubMed:21813640, ECO:0007744|PDB:3AYU"; BINDING 403; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="1"; /ligand_note="catalytic"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:3AYU"; BINDING 407; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="1"; /ligand_note="catalytic"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:3AYU"; BINDING 413; /ligand="Zn(2+)"; /ligand_id="ChEBI:CHEBI:29105"; /ligand_label="1"; /ligand_note="catalytic"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:12032297, ECO:0000269|PubMed:21813640, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1EAK, ECO:0007744|PDB:1GXD, ECO:0007744|PDB:3AYU"; BINDING 476; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="4"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:8549817, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1RTG"; BINDING 521; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="4"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:8549817, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1RTG"; BINDING 569; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="4"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:8549817, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1RTG"; BINDING 618; /ligand="Ca(2+)"; /ligand_id="ChEBI:CHEBI:29108"; /ligand_label="4"; /evidence="ECO:0000269|PubMed:10356396, ECO:0000269|PubMed:8549817, ECO:0007744|PDB:1CK7, ECO:0007744|PDB:1RTG" |
Subellular location [Isoform 1]: Secreted, extracellular space, extracellular matrix. Membrane. Nucleus. Note=Colocalizes with integrin alphaV/beta3 at the membrane surface in angiogenic blood vessels and melanomas. Found in mitochondria, along microfibrils, and in nuclei of cardiomyocytes.; [Isoform 2]: Cytoplasm. Mitochondrion. |
Tissues Produced by normal skin fibroblasts. PEX is expressed in a number of tumors including gliomas, breast and prostate. |
Structure Interacts (via the C-terminal hemopexin-like domains-containing region) with the integrin alpha-V/beta-3; the interaction promotes vascular invasion in angiogenic vessels and melamoma cells. Interacts (via the C-terminal PEX domain) with TIMP2 (via the C-terminal); the interaction inhibits the degradation activity. Interacts with GSK3B. |
Post-translational modification Phosphorylation on multiple sites modulates enzymatic activity. Phosphorylated by PKC in vitro.; The propeptide is processed by MMP14 (MT-MMP1) and MMP16 (MT-MMP3). Autocatalytic cleavage in the C-terminal produces the anti-angiogenic peptide, PEX. This processing appears to be facilitated by binding integrinv/beta3. |
Domain Th |
Target Relevance information above includes information from UniProt accession: P08253 |
The UniProt Consortium |
Frequently Asked Questions
1. **What is the source of the Human MMP-2 Protein (Pro-form) 3489?**
- The Human MMP-2 Protein (Pro-form) 3489 is produced using a mammalian expression system, ensuring high purity and biological activity.
2. **How should I store this protein for optimal performance?**
- It is recommended to store the Human MMP-2 Protein (Pro-form) 3489 at -80°C upon receipt. Avoid multiple freeze-thaw cycles to maintain its stability and activity.
3. **Is this MMP-2 Protein compatible with various experimental techniques?**
- Yes, this protein is highly compatible with applications such as enzyme assays, western blotting, cell culture, and other functional studies involving matrix metalloproteinase-2 (MMP-2).
4. **What are the potential applications of the Human MMP-2 Protein (Pro-form) 3489?**
- This protein can be used for studying extracellular matrix remodeling, cell migration, invasion assays, and as a positive control in MMP-2 related research and drug development.
5. **Can I use this protein in in vitro and in vivo experiments?**
- Yes, the Human MMP-2 Protein (Pro-form) 3489 is suitable for both in vitro studies to assess its enzymatic activity and in vivo experiments to investigate its role in physiological and pathological processes.
- The Human MMP-2 Protein (Pro-form) 3489 is produced using a mammalian expression system, ensuring high purity and biological activity.
2. **How should I store this protein for optimal performance?**
- It is recommended to store the Human MMP-2 Protein (Pro-form) 3489 at -80°C upon receipt. Avoid multiple freeze-thaw cycles to maintain its stability and activity.
3. **Is this MMP-2 Protein compatible with various experimental techniques?**
- Yes, this protein is highly compatible with applications such as enzyme assays, western blotting, cell culture, and other functional studies involving matrix metalloproteinase-2 (MMP-2).
4. **What are the potential applications of the Human MMP-2 Protein (Pro-form) 3489?**
- This protein can be used for studying extracellular matrix remodeling, cell migration, invasion assays, and as a positive control in MMP-2 related research and drug development.
5. **Can I use this protein in in vitro and in vivo experiments?**
- Yes, the Human MMP-2 Protein (Pro-form) 3489 is suitable for both in vitro studies to assess its enzymatic activity and in vivo experiments to investigate its role in physiological and pathological processes.
Publications
pmid | title | authors | citation |
---|---|---|---|
We haven't added any publications to our database yet. |
relevant to this product |
---|
# | ||
---|---|---|
Please enter your product and batch number here to retrieve product datasheet, SDS, and QC information. |
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.