Weight | 1 lbs |
---|---|
Dimensions | 9 × 5 × 2 in |
express system | HEK293 |
product tag | C-His-Avi |
purity | > 95% as determined by Tris-Bis PAGE |
background | HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. |
molecular weight | The protein has a predicted MW of 50.2 kDa. Due to glycosylation, the protein migrates to 52-60 kDa based on Tris-Bis PAGE result. |
available size | 100 µg, 500 µg |
endotoxin | Less than 1EU per μg by the LAL method. |
Biotinylated Human HLA-E*01:03&B2M&Peptide (VMAPRTLVL) Monomer Protein 4333
$310.00 – $1,250.00
Summary
- Expression: HEK293
- Pure: Yes (SDS-PAGE)
- Amino Acid Range: Gly25-Ile305(HLA-E*01:03), Ile21-Met119(B2M) and VMAPRTLVL peptide
Biotinylated Human HLA-E*01:03&B2M&Peptide (VMAPRTLVL) Monomer Protein 4333
protein |
---|
Size and concentration 100, 500µg and lyophilized |
Form Lyophilized |
Storage Instructions Valid for 12 months from date of receipt when stored at -80°C. Recommend to aliquot the protein into smaller quantities for optimal storage. Please minimize freeze-thaw cycles. |
Storage buffer Shipped at ambient temperature. |
Purity > 95% as determined by Tris-Bis PAGE |
target relevance |
---|
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. |
Protein names HLA class I histocompatibility antigen, alpha chain E (MHC class I antigen E) [Cleaved into: Soluble HLA class I histocompatibility antigen, alpha chain E (sHLA-E)] |
Gene names HLA-E,HLA-E HLA-6.2 HLAE |
Protein family MHC class I family |
Mass 40058Da |
Function Non-classical major histocompatibility class Ib molecule involved in immune self-nonself discrimination. In complex with B2M/beta-2-microglobulin binds nonamer self-peptides derived from the signal sequence of classical MHC class Ia molecules (VL9 peptides - VMAPRT[V/L][L/V/I/F]L) (PubMed:18083576, PubMed:18339401, PubMed:35705051, PubMed:37264229, PubMed:9754572). Peptide-bound HLA-E-B2M heterotrimeric complex primarily functions as a ligand for natural killer (NK) cell inhibitory receptor KLRD1-KLRC1, enabling NK cells to monitor the expression of other MHC class I molecules in healthy cells and to tolerate self (PubMed:17179229, PubMed:18083576, PubMed:37264229, PubMed:9486650, PubMed:9754572). Upon cellular stress, preferentially binds signal sequence-derived peptides from stress-induced chaperones and is no longer recognized by NK cell inhibitory receptor KLRD1-KLRC1, resulting in impaired protection from NK cells (PubMed:12461076). Binds signal sequence-derived peptides from non-classical MHC class Ib HLA-G molecules and acts as a ligand for NK cell activating receptor KLRD1-KLRC2, likely playing a role in the generation and effector functions of adaptive NK cells and in maternal-fetal tolerance during pregnancy (PubMed:30134159, PubMed:37264229, PubMed:9754572). Besides self-peptides, can also bind and present pathogen-derived peptides conformationally similar to VL9 peptides to alpha-beta T cell receptor (TCR) on unconventional CD8-positive cytotoxic T cells, ultimately triggering antimicrobial immune response (PubMed:16474394, PubMed:20195504, PubMed:30087334, PubMed:34228645). Presents HIV gag peptides (immunodominant KAFSPEVIPMF and subdominant KALGPAATL epitopes) predominantly to CD8-positive T cell clones expressing a TRAV17-containing TCR, triggering HLA-E-restricted T cell responses (PubMed:34228645). Presents mycobacterial peptides to HLA-E-restricted CD8-positive T cells eliciting both cytotoxic and immunoregulatory functions (PubMed:20195504, PubMed:35705051).; (Microbial infection) Viruses like human cytomegalovirus have evolved an escape mechanism whereby virus-induced down-regulation of host MHC class I molecules is coupled to the binding of viral peptides to HLA-E, restoring HLA-E expression and inducing HLA-E-dependent NK cell immune tolerance to infected cells.; (Microbial infection) May bind HIV-1 gag/Capsid protein p24-derived peptide (AISPRTLNA) on infected cells and may inhibit NK cell cytotoxicity, a mechanism that allows HIV-1 to escape immune recognition.; (Microbial infection) Upon SARS-CoV-2 infection, may contribute to functional exhaustion of cytotoxic NK cells and CD8-positive T cells (PubMed:32859121). Binds SARS-CoV-2 S/Spike protein S1-derived peptide (LQPRTFLL) expressed on the surface of lung epithelial cells, inducing NK cell exhaustion and dampening of antiviral immune surveillance (PubMed:32859121). |
Subellular location Cell membrane ; Single-pass type I membrane protein. Golgi apparatus membrane .; [Soluble HLA class I histocompatibility antigen, alpha chain E]: Secreted . |
Tissues Expressed in secretory endometrial cells during pregnancy (at protein level). The expression in nonlymphoid tissues is restricted to endothelial cells from all types of vessels, including arteries, veins, capillaries, and lymphatics (at protein level). In lymphoid organs, it is mainly expressed in endothelial venules, B and T cells, monocytes, macrophages, NK cells and megakaryocytes (at protein level). |
Structure Forms a heterotrimer with B2M and a self- or a pathogen-derived peptide (peptide-bound HLA-E-B2M) (PubMed:18339401, PubMed:30087334, PubMed:35705051). Similarly to MHC class Ia assembly, HLA-E-B2M heterodimer interacts with components of the antigen processing machinery TAPBP and TAP1-TAP2 complex; this interaction is required for peptide loading and translocation to the cell surface (PubMed:9427624). Interacts with CALCR; this interaction is required for appropriate folding (PubMed:9427624). The optimum binding peptide is a nonamer (VL9) that is primarily derived from amino-acid residues 3-11 of the signal sequences of most HLA-A, -B, -C and -G molecules (PubMed:18083576, PubMed:18339401, PubMed:9660937, PubMed:9754572). The VL9 peptide anchors to five main sites in the peptide-binding groove of HLA-E (PubMed:18339401). Peptide-bound HLA-E-B2M complex interacts with KLRD1-KLRC1 receptor on NK cells (PubMed:18083576, PubMed:9486650). Binds with lower affinity to activating KLRD1-KLRC2 (PubMed:18083576, PubMed:23335510). The common subunit KLRC1 plays a prominent role in directly interacting with HLA-E (PubMed:18083576). Peptide-bound HLA-E-B2M interacts with the alpha-beta TCR on unconventional CD8+ T cells (PubMed:16474394). Peptide-free HLA-E interacts with HLA-F-B2M complex; this interaction may regulate the intracellular trafficking and the stability of peptide-free MHC class I open conformers (OCs). |
Post-translational modification N-glycosylated.; The soluble form (sHLA-E) can be partly produced by proteolytic cleavage at the cell surface (shedding) by a matrix metalloproteinase. Alternative splicing is also suggested as a mechanism for generation of sHLA-E, although it remains to be proved. |
Target Relevance information above includes information from UniProt accession: P13747 |
The UniProt Consortium |
Data
Biotinylated Human HLA-E*01:03&B2M&Peptide (VMAPRTLVL) Monomer on Tris-Bis PAGE under reduced condition. The purity is greater than 95%. |
Publications
Published literature highly relevant to the biological target of this product and referencing this antibody or clone are retrieved from PubMed database provided by The United States National Library of Medicine at the National Institutes of Health.pmid | title | authors | citation |
---|
Protocols
relevant to this product |
---|
Documents
# | ||
---|---|---|
Please enter your product and batch number here to retrieve - product datasheet, SDS, and QC information. |
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.